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Abstract  

Large turbosets constitute a major source of electric energy in the world. They are critical machines 

which are vulnerable to several malfunctions which can decrease their availability and degrade the operation 

of the national electric grid system. The best source of data for assessment of the technical state are the 

transient data, measured during run-ups and coast-downs. The size of this data is very large and its analysis 

can be only performed by highly skilled vibration experts. The goal of this paper is to propose a method, 

which can apply Machine Learning for automated fault detection. In order to improve the quality of the 

learning process the method is accompanied by the ‘Digital Twin’ approach, where the simplified analytical 

rotordynamic model is tuned to a particular turboset and used in the learning process. 
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METODA AUTOMATYCZNEJ DETEKCJI NIESPRAWNOŚCI DUŻYCH TURBOZESPOŁÓW  

Z ZASTOSOWANIEM METOD UCZENIA MASZYNOWEGO NA DANYCH ZE STANÓW 

PRZEJŚCIOWYCH 
 

Streszczenie 

Turbozespoły dużej mocy stanowią znaczną część źródeł energii elektrycznej na świecie. Są to maszyny 

krytyczne, które są wrażliwe na kilka rodzajów niesprawności. Mogą one obniżyć dyspozycyjność maszyn i 

wpłynąć negatywnie na prace całego systemu elektroenergetycznego. Najlepszym źródłem danych do oceny 

stanu dynamicznego są dane ze stanów przejściowych, mierzone podczas rozruchów i odstawień. Są to dane 

o bardzo dużych rozmiarach a ich analiza może być przeprowadzana tylko przez doświadczonych 

diagnostów. Celem artykułu jest propozycja metody, wykorzystującej metody uczenia maszynowego 

(Machine Learning) do automatycznego wykrywania uszkodzeń. W celu podniesienia jakości procesu 

uczenia metoda została uzupełniona o zastosowanie uproszczonego modelu analitycznego stanu 

dynamicznego turbozespołu. Model ten jest dostrajany do danego turbozespołu, a następnie stosowany do 

wygenerowania dodatkowych danych ze stanów przejściowych, które będą następnie użyte w procesie 

uczenia. 

 

Słowa kluczowe: turbozespół, dane ze stanów przejściowych, uczenie maszynowe, modelowanie wirników 

 

1. INTRODUCTION  

 

Large turbosets are the main source of electric 

energy all over the world. Despite the rapid 

development of renewable sources, it will remain so 

at least for the next few decades. They are a critical 

machines which in case of unavailability can 

degrade the operation of the national electric grid 

system. The composition of large turbosets is 

different for every country. In Poland, the most 

important part of the turbogenerators are units of  

200 MW type (13K215 and its modifications). They 

are the most frequently encountered large machines 

in Poland (54 still in operation which constitute 

50% of national power generation capability [1]). 

The next most important type is the 18K360, as 

there are 16 units of this type in Poland. There are 

also several new units of a very large power, 

ranging from 800 MW to 1000 MW. Such a 

structure of the Polish power generation sector is 

the reason of focusing the research on the 200 MW 

class turbines first. The method should be general 

so that it can be applied to other turbines beyond 

the 200 MW. 

The turbogenerators vulnerable to several 

malfunctions. The most important ones are: 

- unbalance,  

- misalignment, 

- oil and steam instabilities, 

- bearing overload/ underload, 

- pedestal looseness, 

- rotor rub. 

Any analysis of the dynamic state of the rotor 

system requires the data. The richest source of such 

a data are relative vibrations of the shaft within the 

journal bearing measured by (eddy current probes). 

The analysis involves several groups of parameters, 

e.g. broadband features, frequency selective 
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features and harmonic vectors. There is a wide 

literature about vibration data analysis and 

manifestation of various malfunctions in the 

vibration signals. The field of rotordynamics was 

intensively researched from the early works of 

Jeffcott [4] until modern times. Very good 

introduction to the subject can be found in the 

classic book of Bently and Hatch [2].  The 

interested reader can also refer to the work of 

Vance [3], where the full course of rotordynamic 

analysis is given. Another interesting book by 

Muszynska [4] presents advanced modelling of 

journal bearing systems and its reaction on most 

important malfunctions.  

Often the availability of the real data from 

faulty states is limited. This reason has triggered 

many research in the field of modelling of rotor 

systems. Complex and accurate models, especially 

focused on 200 MW class turbines were proposed 

by Kicinski [5]. His team developed advanced 

models which implemented FEM (Finite Element 

Method) approach. Interesting papers applying 

model based approach were published by Pennacchi 

et al [6]. Authors presented their experiences with 

using models for fault detection of turbomachinery. 

Even when a model structure is known and fixed, it 

is very important to obtain correct model 

parameters to enable the model output to follow the 

real object. The paper by Bachschmid et al 

discussed model uncertainties and proposes a 

method for automatic parameter update [7].  

With the development of Artificial Intelligence 

and Machine Learning fields, new possibilities 

were opened in recent years to further improve the 

model generation or/ and quality of fault detection. 

For an exhaustive introduction to the domain of ML 

the interested reader can refer to the books of Abu 

Mostafa et al [8] or by Bishop [9]. In general, ML 

helps to analyze large amounts of data and to 

perform a number of various tasks. For the fault 

detection problems, the most useful application of 

AI is classification where a new set of data is 

assigned a group, which can refer to the major 

possible faults and the healthy state. During last 

years several ML algorithms were developed, e.g. 

linear classifiers, neural networks, clustering, 

Bayesian networks, deep networks, Support Vector 

Machines etc. Often, a task requires a combination 

of a few methods. Another distinction of ML 

methods considers the way in which the algorithm 

is trained. The most popular one is the supervised 

learning, which allows for quick optimization of an 

algorithm, provided that there is enough data 

describing all the possible cases. In machinery 

diagnostics practice this condition is often hard to 

fulfill. The other approach is the unsupervised 

learning, where there is no description of the data. 

Still, the data can be clustered, i.e. divided into 

groups of similar properties. Such an approach can 

be useful for the novelty detection task. It is 

valuable for the cases when a data from a new 

machine are being analyzed. In such a case all the 

(very different) data from all the rotational speeds 

and loads should be treated as normal. If there is a 

deviation from a previously known behavior, the 

user should be notified. With the unsupervised 

learning, the further involved of a human expert is 

required. 

Since the beginning of the AI, the machinery 

fault detection was an interesting field of research 

with a high number of papers being published. 

Interesting works presenting comparison of 

different methods was presented by Dou and Zhou 

[10]. Important problem of robustness of 

classification is presented in [11]. Often, a 

combination of a few methods of machine learning 

and artificial intelligence approach is shown as a 

successful method [12-19]. However those works 

involved only ball bearings [22] and were applied 

either for test rigs [25] or on a small scale 

machinery [23].  

There are few published works, where the ML 

methods are proposed for a large scale machinery, 

either using steady state or transient data. Thus, 

such a method can bring significant benefits to the 

user. It can reduce the required workload of a 

highly skilled vibration experts and it can also 

provide better coverage of the data, as now all the 

data can be analysed by an algorithm regardless of 

the availability of the human expert giving the 

outcome with as little error as possible under 

disturbed or uncertain data [21], [22]. The ML 

methods can provide the user with an assessment of 

the technical state of the machine. The assessment 

can be done automatically when the new data are 

available.  

The goal of the paper is to propose a higher 

level method which can properly diagnose turbo-

machine faults based on transient data within as 

little as possible involvement from expert engineer. 

The aim of this concept is to automatically diagnose 

shaftline equipped in journal bearings during 

transient state operation of the large 

turbomachinery. The most accurate information 

about the dynamic state is delivered by eddy current 

probes mounted in the bearing and it will be used 

for further analysis. 

This paper is composed of 4 parts. First, in the 

introduction the current state of the art of both 

rotordynamics and machine learning is briefly 

presented. The special attention is given to the 

problem of automated fault detection in the rotating 

machinery. The Chapter 2 presents the 

fundamentals of rotor vibrations with basic 

analytical models. Practical methods for vibration 

measurements in large turbosets are presented as 

well. Typical vibration expert tools are introduced. 

The Chapter 3 is the main part of the paper and 

presents the proposal of the method. At this stage of 

the development the method does not impose any 

ML algorithm, but presents the larger context of the 

automated fault detection. The most important 

considerations are connection to the data source, i.e. 

online CMS (Condition Monitoring System) and 
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enhancement of the method by the usage of 

simplified analytical model of the shaft line. Such 

an approach is recently referred as the ‘Digital 

Twin’. The Chapter 4 contains concluding remarks 

and describes further steps planned to develop and 

implement the method. 

 
2.VIBRATION OF LARGE TURBOSETS 

 

In the power generation critical machinery such 

as turbo-generators are assumed to run smoothly for 

the whole lifetime period – often more than 30 

years. Especially in large units, which are equipped 

in oil lubricated hydrodynamic bearings, vibration 

severity criterion is one of the most essential 

monitoring parameter as for the machine’s 

mechanical condition. Mechanical vibration is the 

source which contains most information about the 

health of the component. In order to properly use 

the vibration measurement results, the vibration of 

shaft line must be understood. 

The most fundamental concept of estimation of 

rotating machinery is a model of Jeffcott rotor 

described by Vance [3] and shown below: 

 
Fig. 1. The Jeffcott rotor model [3] 

 

 
Fig. 2. End view of the Jeffcott rotor [3] 

 

The model assumes that gravity load is 

neglected, centre of mass of unbalanced disc is at 

the point M and it is located on massless and elastic 

shaft. Geometric centre of the disc is in at point C 

with static unbalance u. Shaft bending stiffness is k, 

mass of the disk is m, air drag and shaft is 

approximated by c (viscous damping coefficient), 

synchronous phase angle is βs, and synchronous 

whirling amplitude is rs. The rotor is mounted on 

rigid bearings. The cartesian coordinates system is 

represented by X and Y axis shown in Fig. 2. 

Taking above into account equations of motion 

for the cartesian coordinate for the model in Fig. 1 

and Fig. 2 can be listed as follows [3]:  

 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑋 = 𝑚ɷ2 cosɷ𝑡 (1) 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑌 = 𝑚ɷ2𝑢 sinɷ𝑡 (2) 

 

With a solution of: 

 

 𝑋 =
ɷ2𝑢

√(
𝑘

𝑚
−ɷ2)

2
+(

𝑐ɷ

𝑚
)2
cos(ɷ𝑡 − 𝛽𝑠) (3) 

 𝑌 =
ɷ2𝑢

√(
𝑘

𝑚
−ɷ2)

2
+(

𝑐ɷ

𝑚
)2
sin(ɷ𝑡 − 𝛽𝑠) (4) 

 𝛽𝑠 = tan−1(
𝑐ɷ

𝑚(
𝑘

𝑚
−ɷ2)

) (5) 

 𝑟𝑠 = √𝑋2 + 𝑌2 (6) 
 

Equations (5) and (6) can be drawn in respect to 

angular speed of the rotor ɷ. This will provide 

useful information on behaviour of the rotor during 

transient state operation i.e. change of rotor speed – 

Fig.3. Analysing Fig. 3 it can be seen that well 

below critical rotor speed (𝜔 = √𝑘/𝑚) phase angle 

(phase lag βs) is in phase with the unbalance force 

u. As rotor reaches its critical speed, whirling 

amplitude rs reaches its maximum with phase angle 

reaches 90°. With increasing of rotation speed, 

phase lag will increase from 90° up to 180° which 

will cause whirling amplitude to reduce after its 

critical speed range. 
 

 
Fig. 3. Amplitude vs. phase during speed 

change in Jeffcott model for two damping 

coefficients [3] 
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On Fig. 3 in shown that damping coefficient has 

significant influence of the synchronous response 

during transient state. In real application 

synchronous response of the rotor during transient 

speed operation (i.e. start-up, cast down) is much 

more complex and is highly influenced by damping 

factor. This factor is dependent on bearing’s oil 

wedge parameters. Different bearing geometry, oil 

parameters and other factors (eg. assembling 

technology, etc.) can produce different wedge 

properties on the same machine and as an result 

exhibit different characteristics close to its critical 

zone – see Fig.4. The Fig. 4 presents Bode plot of a 

real turboset after modification of bearing 

parameters. 

 

 

 
Fig. 4. Amplitude and phase vs revolutions 

(Bode plot) from that same probe before (top) 

and after (bottom) change in the bearing 

parameters 

 

As it shown in Fig. 4, proper bearing’s 

parameters has an important influence on whether 

the machine’s dynamic state would be accepted or 

not for long time safe operation. During start-up 

(Fig. 4 top) it was decided to correct the bearing-

rotor system parameters to meet an “A” zone acc. to 

ISO 20816-2:2017 (former ISO 7919-2:2009) 

standard. After improving bearing-rotor system 

parameters criteria were met – Fig. 4 bottom. 

The real machines are much more complex than 

the basic Jeffcott model. They consist of several 

rotors, supported often with different bearing’s 

types. Fig. 5 presents a shaftline of a 200MW type. 

It consists of 4 to sometimes 5 rotors, and the 

complexity of the analysis increases significantly. 

 

 

Fig. 5. Schematic of shaft line of the 200 MW 

type turboset 

 

Large turbogenerators are considered as the 

most important machines in power generation 

process. Thus, they are equipped in eddy current 

probes for both protection and monitoring of the 

unit. 

For the case of large turbomachinery which are 

rigidly coupled with generator (e.g. Fig. 5) passing 

through transient state, the most common excitation 

force is one which comes from residual unbalance. 

It excites the system at the frequency 1X (first 

harmonic of the rotational speed) [2], [3]. For this 

purpose synchronous waveforms and theirs 

processed features (conjunct with tacho reference 

signal – once per revolution) will be taken into 

account (including sub-synchronous component and  

a first few harmonics [2]).  

  

 
Fig. 6. Measurement’s arrangement on a 

bearing 

 

Information about this behaviour can be 

provided by two types of sensors. Such an 

arrangement can provide a lot of information from 

diagnostic and analytical point of view. The two 

types of vibration sensors are: relative vibration 

sensor mounted in the bearing and absolute 

vibration sensor mounted on the bearing pedestal – 

as depicted in Fig. 6. Relative vibration sensors 

measure the distance from its tip to the shaft which 

rotates inside the bearing. Absolute vibration sensor 

measure the velocity or acceleration of the bearing 

pedestal. Machine with 4 rotors supported on 7 

bearings will typically have 14 eddy current probes 

and several absolute vibration sensor which 

complement the information about the vibration 

behaviour. Orthogonal arrangement of the relative 

probes enables to analyse shafts’ orbit [2] at each 

bearing, and during transients each probe can 

exhibit support anisotropy [4]. 

The raw vibration signals are very complex and 

have very large size. Therefore, there are a few 

types of signal features, which allow to describe 

machine dynamic state such as: overall level of 

vibration, both relative (measured in µmpp or µm0p) 

and absolute (measured in RMS – root mean 

squared, or 0-pk – zero-peak). Other commonly 

used features are 1X, 2X and subsynchronous [2]. 

For the harmonic features it is important to track 

both amplitude and phase. All the features are 

derived from the displacement or velocity sensors, 

as described above. 

Transient data are, next to steady state data, a 

diagnostic tool, to assess the dynamic state of the 

machine [21]. Steady state operation is condition at 

the rated speed and within load operation. Transient 

states are: start-up, shut-down and passing through 

the resonance ranges. Transient data allow to 
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determine parameters which aren’t visible during 

the nominal speed operation, such as bearing 

parameters such as stiffness [24] and natural 

frequencies. These data can be used to determine 

both rotor and structural frequencies of the bearing 

pedestals [4]. Rubs and rotor cracks can be much 

easier identified during transients [2], [4], [20], 

[25]. Machines equipped with hydrodynamic 

bearings can also develop an oil whirl/whip 

phenomenon, when the oil film behaves like the 

oscillating dynamic system [4]. The Fig. 7 depicts a 

real case, when the oil whirl was encountered 

during the machine run-up which forced trip 

(forced outage) of the turbine. 

 

 
Fig. 7. Hydrodynamic instability during  

start-up of 200 MW unit (cascade spectrum plot) 

 

In the example shown on Fig. 7 the fluid film 

instability (oil whirl) develops near to FSNL (Full 

Speed No Load) operation  (Fig. 7 – top plot). 

Using the full spectrum plot, presence of an oil 

whirl can be seen in two directions. The severity of 

oil whirl is apparent on the Trend plot (Fig. 7 

bottom). The vibration amplitude during oil whirl 

(280µmpp) is near to the clearance boundaries 

between shaft and bearing (approx. 320 µmpp) 

which can cause damage to the components of the 

machine. 

During each transient state (both start-up and 

coast down) different parts of coupled shafts pass 

through their critical rotational speed region. It is 

typical that some shafts operate above their first 

mode (HP, IP part), and some even above the 

second mode (Gen, sometimes LP) which makes 

analysis much more complex and prone to error. 

 
Table 1. Theoretical critical speeds for the one of the 

200 MW unit for the ideally stiff support assumption. 

Data from commercial dynamical system  

Critical Rotational 

speed 

[rpm] 

Affected rotor 

I 882 Generator 1. mode 

II 2195 Turbine – High Pressure 

III 2580 Generator 2. mode 

IV 3415  Turbine – Low Pressure 

V 3514 Turbine – Intermediate Pressure 

 

During each transient the turboset which 

consists of 4 rotors in such an arrangement (Fig. 5) 

will pass through at least three critical speeds listed 

in the Table 1 (I – III). The critical speeds no. IV 

and no. V are above operating speed range and they 

will not affect vibration during the transient states. 

Monitoring of vibration signal features during 

transient operational states is a powerful source of 

information. Unfortunately, such an analysis 

requires a skilled expert. An automated method for 

such an analysis will improve the safety of 

operation and decrease the labour cost of the 

machinery maintenance. 

 

3. PROPOSAL OF THE METHOD 

 

The main part of the paper is description of the 

method which can properly diagnose turbo-

machinery faults. The method was developed with 

following assumptions: 

- uses relative vibration data, 

- transient data are the main source of 

information, 

- signal estimates are used and not the raw 

vibrations, 

- the data are supported by the ‘Digital Twin’ 

data, 

- supervised learning will be adopted. 

The complete flowchart of the method is 

presented in the Fig. 8. Main source of the data is 

the real machine (Physical object) on the top right 

with eddy current probes. Typical 200 MW turbine 

has 14 such relative vibration sensors. A machine 

can be equipped with online monitoring system or 

with a portable one. Each of such systems collect 

raw vibration data and calculates the signal 

features. They become the ‘Processed Data’. This 

data are much smaller in size and retain all the 

important information about the critical speeds and 

damping, which are essential for the fault detection. 

Both sources should store the data in a known, 

uniform data format, i.e. they are converted to the 

dataset format. 

The common problem with application of ML 

methods for machinery diagnostics is insufficient 

amount of data. Even if the online data is available 

(as it is the case recently with the proliferation of 

the online CMS), this data is in almost 100% 

coming from a healthy technical state. There is 

sometimes some faulty data available, but 

comparison with the scope of potential faults (in 

different magnitudes), the feature space is 

practically empty. We decided to tackle this 

limitation with the so-called ‘Digital Twin’ 

approach, which is a simplified numerical model. 

As presented in Fig. 8, The Analytical Model (top 

left) is a 1D lumped parameters model of the 

machine which consist of an n sections depicted at 

fig. 8. Sections are realized as lumped mass points 

at the point of section’s centre. Particular sections 

of the rotor model are treated as a mass of specified 

inertia dependent on dimensionality of the section 

attached across massless rotor line. 
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Fig. 8. Simplified n sectioned, lumped mass 

model of 200 MW unit. 

 

The main model features are: 

- different stiffness in both translational and 

rotational movements (dependent on applied 

material); 

- bearings with non-linear characteristics; 

- sections of anisotropic area (anisotropic rotor 

simulation – crack rotor simulation); 

- ability to simulation of a transient state (start-

up, cast-down); 

- simulation of different malfunction (unbalance 

response for different locations across the 

shaftline, fluid inducted instabilities (oil 

whirl/whip), misalignment, etc). 

Initial tests of the model were performed at the 

test rig. The simple rotor system (consisted of a 

shaft with two discs and two supports). This test rig 

geometry was implemented in a model. The 

vibration measured on the rig and obtained from the 

model were in good agreement (Fig. 9). 

Fig. 9. Numerical rotor model (top two) and test rig 

measurements (bottom two). 

 

There are, however limitations of the presented 

simplified modelling approach: 

- discrepancies in outcome data due to 

insufficient numbers of sections can cause ; 

- impossibility to model e.g. steam unbalance due 

to difference in feeding nozzle boxes, as it is not 

a phenomenon which can be modelled in 1D 

only. 

The “Digital Twin” model is much simpler and 

easier to handle than the complex FEM model. 

Since the output of the model are only the 

processed data, it needs only to be as accurate as to 

generate accurate enough signal features (pp, rms, 

gap, 1X, 2X, sub). This features are next stored in 

the same format as the data from the physical 

object. Accuracy requires that different types of 

journal bearings should be implemented in order to 

properly simulate the machine behaviour during 

transients. For example the modernized designs of 

200MW type turbines includes different types of 

journal bearings such as cylindrical bearings with 1 

oil inlet (1 wedge bearing), an elliptical bearings 

with one oil wedge and an Y-type bearing (bearing 

no. 1). This requirement makes modelling more 

complicated and forces to take all of above 

mentioned types into account in order to receive 

proper simulation’s data. Still, only the lump 

parameters models will be used. 

Simulated data would be transposed/transferred 

into a set of processed  data with features like: 

unfiltered vibration amplitudes (in µmpp),  

synchronous response of rotor system in all 

bearings (1X amplitude and phase lag), sub-

synchronous response (near the 0.5X), and super-

synchronous part of signal (like 2X, 3X etc.). This 

kind of data would create a basic data set for 

training purposes marked as the “OK state”. 

Altering some model features (like bearing’s 

parameters, adding unbalance, etc.) a full 

malfunction data will be prepared as the training 

data set, which than be used to train the ML 

algorithm. 

There are a few ML algorithms which will be 

taken into consideration: 

- kNN (k Nearest Neighbour); 

- SVM (Support Vector Machines). 

The “kNN” model is a “lazy” (learning from 

data) non-parametric classification algorithm. It 

makes no assumptions about data distribution and it 

doesn’t use training data to perform any 

generalization. It measures how new data are far 

from training data set. 

The SVM algorithm tries to produce optimal 

hyperplane from labelled data provided as a 

training data set to define decision boundaries. It is 

often a model of choice for a classification task, as 

in the proposed problem. 

With the data from both real object and the 

Digital Twin ready, these files are sent to the 

Feature extraction module (Fig. 10, middle), which 

performs all the steps required to prepare the data 

for ML algorithms. The scope of the pre-processing 
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depends on a method used, but typically contains 

validation, detection of bins referring to the 

operational states, so that only transient data are 

processed further. Most methods require 

normalization of features to be performed. If 

required, orthogonalization can be also applied to 

the data at this point. 

The proper ML algorithm is applied after this 

step (Fig. 10 bottom right). For simplicity the Fig. 

10 depicts the real data as the testing data and the 

simulated data as the training data. In reality, 

however, these both types can (ad if possible – 

should) be mixed so that the better quality of 

training can be achieved. The proposed method is 

not restricted to any particular ML method and 

many algorithms can be applied here. This will be 

the subject of further research. 

The final step of the method (Fig. 10, bottom 

left) is the Algorithm results box. It is composed of 

validation of the results, and it is a heuristic step 

designed to avoid systematic errors in 

classification. The next one is the data presentation, 

where the raw output from an ML algorithm can be 

analysed and the expert can monitor performance 

and efficacy of the algorithm. The data are finally 

sent to the Diagnosis proposal module. This module 

is meant to be used by plant operators. It should  
 

 

 
Fig. 10. Flowchart of the proposed fault detection method 
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have only a limited functionality, where the 

estimated technical state is presented for the user. 

The proposal will be accompanied by only the most 

important data, e.g. timestamp, speed and load 

conditions. The final design of this module will be 

completed after several rounds of discussions with 

plant operators. It should also include the automatic 

reporting functionality. 

Thus, the method will assign the data to one of 

following states: OK, unbalance, rubs, oil 

wirl/whip, misalignment and other known faults. It 

is important also to include the state ‘unknown’. 

The data can be assigned to this state if the current 

set is too far away from any known state and can 

happen if a new fault is encountered. Such a data 

can be later used for retraining of the system and 

adding the new fault type. 

 

4. CONCLUSIONS 

The theory of rotating shaft vibration is well 

developed. It starts from the fundamental Jeffcott 

model and develops into very sophisticated models 

of multi rotor systems. Still, despite the 

development of signal processing and machine 

learning techniques, there are no proposals of 

methods, which propose to automatically analyse 

the fundamental signals features collected during 

the transient state. The paper proposes such a 

method. The data can be acquired in large amounts 

using an interface to commercial online CMS 

systems. The key problem in Machine Learning is 

lack of sufficient amount of data to properly train 

and validate a model. The proposed concept uses a 

simplified numerical model of the shaftline 

vibration. The model is then used to simulate data 

from transient states, including different 

malfunctions. The success of the method will 

depend on the ability of the model to properly 

reflect the machine vibrations. The approach can be 

used with many ML algorithms, as there are no 

assumptions towards any particular model. These 

steps will be the subject of further research. 
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